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Humans can recognize others’ actions in the social environment. This action recognition ability is rarely hindered by the movement of
people in the environment. The neural basis of this position tolerance for observed actions is not fully understood. Here, we aimed to
identify brain regions capable of generalizing representations of actions across different positions and investigate the representational
content of these regions. In a functional magnetic resonance imaging experiment, participants viewed point-light displays of different
human actions. Stimuli were presented in either the upper or the lower visual field. Multivariate pattern analysis and a surface-based
searchlight approach were employed to identify brain regions that contain position-tolerant action representation: Classifiers were
trained with patterns in response to stimuli presented in one position and were tested with stimuli presented in another position.
Results showed above-chance classification in the left and right lateral occipitotemporal cortices, right intraparietal sulcus, and right
postcentral gyrus. Further analyses exploring the representational content of these regions showed that responses in the lateral
occipitotemporal regions were more related to subjective judgments, while those in the parietal regions were more related to objective
measures. These results provide evidence for two networks that contain abstract representations of human actions with distinct
representational content.
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Introduction
Humans can rapidly and accurately recognize other
people’s actions in the social environment. People’s
movement in the environment introduces often dramatic
changes in the viewpoint, size, and position of their image
on the retina. This confounding variability renders the
action recognition task computationally challenging. Yet,
humans’ ability to recognize actions is rarely hindered
by this variability. A brain region that subserves human
action recognition ability is expected to contain (i)
information about various human actions and (ii) action
representations that are tolerant to the variability in the
visual input. Here, using functional magnetic resonance
imaging (fMRI) and multivariate pattern analysis (MVPA),
we aim to identify such regions using changes in
the position of the actor as the source of variability.
After identifying these regions, we aim to explore their
representational content and determine to what extent
they relate to human subjective judgments about actions
or objective measures of body movements.

Previous studies that have explored tolerance of
visual representations to variability in the input have
mostly focused on static pictures of objects and human

bodies. Regions in both occipitotemporal (Konen and
Kastner 2008; Cichy et al. 2011, 2013; Anzellotti et al.
2013; Ramírez et al. 2014) and parietal cortices (Konen
and Kastner 2008) have been identified, which contain
position, size, and viewpoint-tolerant representation of
static objects (Konen and Kastner 2008; Mur et al. 2010;
Cichy et al. 2011, 2013; Anzellotti et al. 2013; Ramírez
et al. 2014; Vaziri-pashkam and Xu 2019; Vaziri-Pashkam
et al. 2019). This characteristic has been proposed as
a defining feature of regions that contribute to human
abstract object knowledge (DiCarlo and Cox 2007). In the
domain of observed actions, despite the large body of
literature that identifies regions in the occipitotemporal
and parietal cortices that respond to (Caspers et al. 2010;
Kalénine et al. 2010; Grosbras et al. 2012; Watson et al.
2013; Urgesi et al. 2014) and contain information about
(e.g. Wheaton et al. 2004; Jastorff et al. 2010; Abdollahi
et al. 2013; Lingnau and Downing 2015; Ferri et al. 2015;
Hafri et al. 2017; Wurm, Caramazza, et al. 2017b; Urgen
et al. 2019; Tucciarelli et al. 2019; Tarhan and Konkle
2020; Urgen and Orban 2021) observed actions, evidence
for the tolerance of these representations to changes in
the position of the actors is still scant.
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Previous studies have extensively investigated the tol-
erance of action representations to changes in view-
point in both monkeys (Oram and Perrett 1996; Caggiano
et al. 2012; Vangeneugden et al. 2014; Maeda et al. 2015;
Maranesi et al. 2015; Barz et al. 2017; Simone et al. 2017;
Livi et al. 2019; Albertini et al. 2020; Lanzilotto et al. 2020)
and humans (Grossman et al. 2010; Ogawa and Inui 2011;
Oosterhof et al. 2012; Tucciarelli et al. 2015; Isik et al.
2017). Results of these human studies provide evidence
for viewpoint tolerance in the lateral occipitotemporal
(Grossman et al. 2010; Tucciarelli et al. 2015) and parietal
cortices (Ogawa and Inui 2011; Oosterhof et al. 2012). In
contrast to viewpoint tolerance, position tolerance has
not been extensively explored. Grossman et al. (2010)
employed an fMRI adaptation approach to investigate
position tolerance in the human brain. They found that
a region in human STS shows tolerance to variations
in the position of observed actions. They did not sys-
tematically investigate the position sensitivity of parietal
action-selective regions. The fMRI adaptation technique
used in this study may not have sufficient power in
identifying the full scope of position tolerance in action-
selective regions compared to other techniques, such as
MVPA, (Haxby 2012), that directly investigate the repre-
sentational content of a region. Roth and Zohary (2015)
employed MVPA correlation and crossdecoding to study
position tolerance during observation of tool-grasping
movements in humans. Their stimuli were presented in
various locations, and position tolerance was examined
for presentations in the left and right visual fields. They
discovered that position information is gradually lost,
and hand/tool identity information is enhanced along
the posterior–anterior axis in the dorsal stream. However,
their study was limited to grasping movements. It is not
obvious whether their results would generalize to full-
body movements.

Other studies that have employed MVPA have often
used natural stimuli in which actions happen at dif-
ferent positions, but they have averaged the responses
across stimuli instead of systematically investigating the
tolerance of representations across changes in position.
Therefore, it is hard to speculate about the extent of
position tolerance in action-selective regions from these
studies (Hafri et al. 2017; Wurm, Caramazza, et al. 2017b;
Tarhan and Konkle 2020). As such, a systematic inves-
tigation of position tolerance across dorsal and ventral
action-selective regions is still missing in the literature.
In this study, we will use MVPA and cross-position decod-
ing using a support vector machine (SVM) classifier to
search for position-tolerant representations of actions
in the human brain. Within these regions, we will then
investigate their representational content using a repre-
sentational similarity analysis (RSA; Kriegeskorte et al.
2008).

Several theories have been proposed to characterize
the role of individual action-selective regions in the pro-
cessing of action stimuli. In the occipitotemporal cortex,
a division of labor has been suggested between regions

such as EBA, that process the form of the body, and
regions such as STS, that process the movement of the
body (Giese and Poggio 2003; Michels et al. 2005; Downing
et al. 2006; Peelen et al. 2006; Jastorff and Orban 2009;
Grossman et al. 2010; Vangeneugden et al. 2014). These
studies do not elaborate on the representational con-
tent of these regions. A few studies have taken a step
further to establish the principles of coding in action-
selective regions. Within the lateral occipitotemporal cor-
tex, Wurm, Caramazza, et al. (2017b) have suggested that
the neural representation of hand actions is organized
based on the extent of sociality and transitivity of these
actions. Recently, in a study with a large set of natural
images of actions, Tucciarelli et al. (2019) compared the
similarity in neural representation with their semantic
similarity obtained from behavioral ratings. They showed
that the neural organization of observed actions in the
lateral occipitotemporal cortex is correlated with the
behavioral similarity judgments.

Investigations on the representational content of pari-
etal action-selective regions are fewer in number, and
their results are more subject to debate. Shmuelof and
Zohary (2006, 2008) have proposed an effector-dependent
representation of hand actions in the anterior intrapari-
etal cortex, while others have argued that actions are rep-
resented in an effector-independent manner in the infe-
rior parietal lobe (Jastorff et al. 2010) as well as superior
parietal lobe and intraparietal sulcus (IPS) (Vingerhoets
et al. 2012). One study (Jastorff et al. 2010) suggested that
action representations in the parietal cortex are related
to the direction of the action relative to the body.

Looking at the entire visual system, Tarhan and Konkle
(2020) used an encoding model to predict responses to
natural videos. The feature space of their model captured
the body parts involved in an action and the action
target. Based on the voxel tunning, they suggested that
5 large-scale networks exist in the human brain which
represent actions based on their sociality and the spatial
extent of their interaction envelope. All these studies
have employed natural videos of actions in which often
a whole scene and objects are present. Employing nat-
ural stimuli may lead to many confounding factors and
difficulties in interpreting the results. Even though some
of these studies have taken steps to make sure low-level
features are not contributing to their results (Tucciarelli
et al. 2019; Tarhan and Konkle 2020), there is a possibility
their results may be related to the presence of special
types of objects, scene contexts, and semantic relations
between them (Kourtzi and Kanwisher 2000; Senior et al.
2000; Johnson-Frey 2004; Buxbaum et al. 2006; Wurm
et al. 2012; Schubotz et al. 2014; Wurm and Schubotz
2017; Wurm, Artemenko, et al. 2017a; El-Sourani et al.
2018; Leshinskaya et al. 2018).

Here, employing fMRI MVPA, we searched for position
invariant representation of human actions presented in
point-light display format . We used controlled stimuli in
PLD format to restrict the visual information to the bodily
movements and to identify regions supporting abstract
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Fig. 1. Representative frames of the 10 human action videos in PLD format used in the experiment.

action representations. Using these controlled action
stimuli, we localized regions where action decoding was
robust to changes in position. Employing PLD stimuli also
allowed us to determine the position and movements
of individual limbs and to devise objective measures
for estimating similarity between actions. Using these
objective measures of similarity as well as subjective
measures derived from behavioral experiments, we
characterized the representational content of action-
selective regions.

Materials and methods
Participants
Twenty-five subjects (14 females, 20–38 years of age)
took part in the fMRI experiment and 15 subjects (13
females, 25–38 years of age) took part in the behav-
ioral experiment. Behavioral subjects were independent
of fMRI subjects. All subjects were healthy and were
right-handed with normal visual acuity. They gave writ-
ten informed consent and received payment for their
participation. The experiments were approved by the
Ethics Committee on the use of human subjects at the
Iran University of Medical Sciences. Three fMRI subjects
were later excluded due to excessive motion (see Data
analysis for more details), and the final analyses included
the remaining 22 subjects.

fMRI experiment
In this experiment, we used videos of 10 different
human actions in PLD format: Crawl, Cycle, Jumping
Jack (henceforth referred to as Jump), Paddle, Play tennis,
Salute, Shovel, Stir, Walk, and Wave (Fig. 1) (in the original
dataset, Paddle and shovel are called Pedal and Spade,
respectively). These actions were selected from a larger
set of human action videos in PLD format provided by
Vanrie and Verfaillie (2004).

We used a block design paradigm. Each run included 20
blocks with two blocks for each human action video. In
one of the blocks for each action, the video was presented

in the upper visual hemifield, and in the other, it was
presented in the lower visual hemifield. The presentation
order of the stimuli was counterbalanced across runs.
Each block lasted for 8 s. There was an 8-s blank period in
the beginning, end, and between stimulus blocks of each
run. Each run lasted for 328 s. Each subject completed 1
session of 10 runs.

In each stimulus block, there were 4 repetitions of the
same human action video. Each repetition lasted for 1.5 s
(frame rate 30), followed by a 0.5-s blank period. The
point-lights, subtending ∼0.25◦ of visual angle, were in
white color against a black background. The center of the
stimuli was presented ∼4◦ of visual angle above/below
the fixation point. The size of the area that the dots
occupied during movements was between 0.94◦ and 5.62◦

in width and between 2.38◦ and 7.7◦ in height.
The fixation point was a red circle of size ∼0.25◦ of

visual angle. In a randomly chosen repetition in each
block, the size of the dots became 50% larger for 1 s.
Subjects were instructed to fixate on the fixation point
at the center of the screen, watch the videos, detect the
change in the size of the point lights, and report it by
pressing a response key with their right index finger.

Behavioral experiment
To capture the similarity between our human action
stimuli, we conducted a behavioral experiment based on
an inverse multidimensional scaling method proposed
by (Kriegeskorte and Mur 2012). At the beginning of the
experiment, one snapshot from each of the 10 action
videos was presented along with a number in the range
of 1–10 in two vertical columns at the left border of the
screen. On a separate screen, participants were provided
with numbered action videos, and they could watch them
as many times as they needed. They were asked to rear-
range the snapshots on the surface of a gray circle (drag
and drop using the mouse) according to the perceived
similarity of their corresponding videos. The arrange-
ment was performed based on subjective judgments of
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overall similarity, and no other instructions were given
regarding the specific aspects they needed to focus on
for the arrangement. A behavioral dissimilarity matrix
was obtained based on the pairwise Euclidean distances
between positions of actions in the final 2D arrangement
on the circle for each participant (see Supplementary
Fig. S3 for behavioral dissimilarity matrix and MDS).

Magnetic resonance imaging methods
Magnetic resonance imaging (MRI) data were collected at
two centers: at the school of Cognitive Sciences, Institute
for Research in Fundamental Sciences (Tehran, Iran),
using a Siemens 3T Tim Trio MRI scanner and a 32-
channel head coil, and at the National Brain Mapping Lab
(Tehran, Iran) using a Siemens 3T Prisma MRI scanner
and 20-channel or 64-channel head coil. We were forced
to switch MRI equipment midexperiment due to scan-
ner/coil malfunction (data of 5 subjects were recorded at
the school of Cognitive Sciences, and data of 20 subjects
were recorded at National Brain Mapping Lab). We moved
scanners to ensure that high-quality data were collected
for all subjects. Similar protocols were used across scan-
ners, and the data recorded with different equipment
were comparable.

Subjects viewed the visual stimuli through a back-
projection screen, and the task was presented using
MATLAB and Psychtoolbox-3 (Brainard 1997). Functional
images were obtained using a T2∗-weighted single-shot
gradient-echo EPI sequence with a time repetition (TR)
of 2 s, time echo (TE) 26 ms, 90◦ flip angle, 30 transverse
slices, and a voxel size of 3 × 3 × 4 mm3. A high-resolution
T1-weighted structural scan was also acquired from
each participant using an MPRAGE pulse sequence
(TR = 1,800 ms, TE = 3.44 ms, inversion time = 1,100 ms,
7◦ flip angle, 176 sagittal slices, and 1 × 1 × 1 mm3

isotropic voxels).

Data analysis
Freesurfer (https://surfer.nmr.mgh.harvard.edu) and FS-
FAST (Dale et al. 1999) were employed for data prepro-
cessing and general linear model (GLM) analysis. Prepro-
cessing of fMRI data included motion correction, slice
timing correction, linear and quadratic trend removal,
and no spatial smoothing. Subjects with excessive head
motion (>1.5 mm within a run and 4 mm across runs)
were excluded (3 subjects). Functional data were then
resampled to the cortical surface of individual subjects.

A run-wise GLM analysis was performed to obtain the
beta values and their corresponding t-statistic for each
human action and each presentation hemifield in each
vertex (10 human actions in the upper visual field and
10 human actions in the lower visual field, leading to
20 regressors). Linear and quadratic polynomial nuisance
regressors and external regressors from the estimated
head movements were also included.

Wang atlas of visual topography (Wang et al. 2014) was
used to localize retinotopic areas for each subject: V1, V2,

V3, hV4, VO1, VO2, MST, hMT, LO2, LO1, V3a, V3b, IPS0,
IPS1, IPS2, IPS3, IPS4, IPS5, SPL1 (Fig. 5A).

Multivariate pattern analysis
In-house MATLAB code, LibSVM (Chang and Lin 2011),
and CoSMoMVPA (Oosterhof et al. 2016) toolboxes were
employed for searchlight and Region Of Interest (ROI)
analysis.

Searchlight analysis

We performed action classification using a surface-based
searchlight procedure to obtain a map of classification
accuracy (Oosterhof et al. 2011). In a leave-one-run-
out crossvalidation procedure, samples (t-statistics of
vertices) were partitioned to train and test sets. A
multiclass linear SVM was employed to perform brain
decoding classification for each presentation position
(upper/lower visual hemifield) in individual brains with
a searchlight circle of 100 vertices on the surface. The
decoding accuracy of a searchlight was calculated as
the average of within-position classification accuracies,
i.e. decoding was performed for each presentation
position (upper/lower visual hemifield) separately, and
the average of these two classification accuracy maps
was used as the within-position classification accuracy.
The resulting maps were then resampled to a common
surface for the group-level statistical analysis.

To determine regions showing position tolerance, we
performed cross-position decoding by training a classi-
fier to discriminate actions presented in one position and
testing its accuracy in classifying the same actions in
the other position. To match the analysis procedure of
within- and cross-position accuracies, we also employed
a leave-one-run-out crossvalidation procedure for this
analysis, training on 9 runs and testing on a left-out run.
We performed the analysis in both directions (training
on upper visual field and testing on lower visual field
and vice versa) and averaged the results across the two
directions. A cross-position decoding accuracy greater
than the chance level would indicate position tolerance.

To obtain group-level statistics, P-values of classifica-
tion accuracies were computed using a binomial test,
which was corrected for false discovery rate (Benjamini
and Hochberg 1995) at level q1. The second-level P-value
for each vertex was then determined as

Pr
[
Binomial

(
n, R ∗ q1/ (n ∗ m)

) ≥ C
]

,

with C denoting the number of participants for which
that vertex was significant, R denoting the sum of the
counts of C across all vertices, n denoting the num-
ber of participants, and m denoting the number of ver-
tices. Under the null hypothesis, C has a binomial dis-
tribution with size n and a probability that is approx-
imately bounded by R ∗ q1/(n ∗ m). Finally, the derived
second-level P-values were thresholded at the FDR level
q2 to acquire the significant vertices at the group level
(McMahon et al. 2019). This approach is more appropriate
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than the t-test for comparing classification accuracies
against chance level (see Allefeld et al. 2016 for a discus-
sion of why the t-test is not suitable in such cases).

From the searchlight group-level statistical analysis,
we obtained clusters with significant cross-positions
classification accuracy. Thereafter, significant clusters
with >100 vertices were hand-selected based on anatom-
ical landmarks to define the five ROIs in which decoding
of actions could be generalized across positions and
could be used in the next analyses to explore their repre-
sentational structure. To ascertain that the ROI selection
and further analyses are statistically independent and
prevent double-dipping, we used a leave-one-subject-out
approach (Etzel et al. 2013). The group-level statistical
analysis was applied to the searchlight results of all
subjects except one, and the resulting ROI was projected
on the left-out subject to select the ROI in that subject.
The procedure was repeated for each subject. The same
clusters were found consistently across all iterations.

Comparing within- and cross-position classification
accuracies

To directly compare within- and cross-position classi-
fication accuracies, we performed SVM classifications
within each ROI obtained from the leave-one-subject-out
analysis described above. The procedure for obtaining
within- and cross-position classifications was the same
as the searchlight analysis except that we employed two-
class instead of multi-class linear SVM and calculated
the average of all pair-wise classification accuracies. Dif-
ferent ROIs do not include the same number of vertices.
This variation in the number of vertices across ROIs
could influence classification accuracies. To avoid this
potential confounding factor, the pairwise classifications
were performed using the 100 most informative vertices
in each ROI. To select the most informative vertices, a t-
test was applied on the training set, and 100 vertices with
the lowest P-values for discriminating between the condi-
tions of interest in the training set were chosen (Mitchell
et al. 2004). It is noteworthy that the classification results
did not qualitatively differ without feature selection.

Exploring the representational content of the ROIs

To explore the representational content of the ROIs, we
constructed models based on the body-part movements
and behavioral ratings and examined the correlation
between these models and the cross-position decoding
accuracies for each ROI.

To obtain the body-part movement model, we divided
the point lights into five groups: trunk (five dots), left
hand (two dots), right hand (two dots), left leg (two dots),
and right leg (two dots). We obtained the sum of the
displacements of point lights in each group for each
action video. From the total displacements in each group,
we obtained a 5-element vector. Then, the Euclidean
distance between these 5-element vectors was used to
obtain a dissimilarity matrix based on the body-part
movement. This body-part movement model includes

information on both the pattern of body-part move-
ment and the average of their movement for each action.
Hence, for further investigation, we examined two other
models: body-movement-pattern and body-movement-
average. To obtain the body-movement-pattern model for
each action, we demeaned the corresponding 5-element
vector of the body-part movement model and obtained
the Euclidean distance between these new demeaned
vectors to build a dissimilarity matrix. The difference
between the average values of body-part movement vec-
tors was also used to obtain the body-movement-average
model.

To obtain the behavioral dissimilarity model, the
results from the behavioral experiment were used. In
the behavioral experiment, the distance between stimuli
indicates their dissimilarity. The obtained dissimilarity
matrix for each subject was normalized by dividing each
value in the matrix by the maximum value. The pooled
behavioral dissimilarity matrix was then computed as an
average of individual normalized behavioral dissimilarity
matrices.

To obtain the correlation between the models and the
action representations in each ROI, the off-diagonal of
the matrix obtained from the pairwise cross-position
decoding accuracies was vectorized. The off-diagonal of
the dissimilarity matrices from the models were also
vectorized. The Kendall rank correlation between dissim-
ilarity vectors and decoding accuracy vectors was then
calculated, and the correlation values were compared to
characterize the representational content of each ROI.

ROI similarity analysis

We also performed the cross-position decoding accu-
racies for ROIs obtained from the Wang atlas using a
similar procedure as that used for the ROIs obtained
from the searchlight analysis. Following a leave-one-run-
out approach, a classifier was trained to decode pair of
actions presented in one position and tested with the
same pair of actions in another position. We applied a
t-test on the training set to choose 100 vertices with the
lowest P-values for discriminating between the actions
of interest in each ROI. Then, to investigate the represen-
tational similarity between ROIs (Wang’s ROIs and ROIs
obtained from searchlight analysis), correlations were
computed between the vectorized matrices of pairwise
cross-position decoding accuracy. One minus these cor-
relation values were used to obtain the distance between
the ROI pairs, and these distances were used to construct
an ROI dissimilarity matrix. The ROI dissimilarity matrix
was first computed for individual subjects and was then
averaged across subjects to acquire a group-level ROI
dissimilarity matrix (Fig. 5B).

Split-half reliability of ROI dissimilarity matrix was
also evaluated; we randomly divided subjects into two
equal groups and correlated the corresponding group-
level ROI dissimilarity matrices as a measure of relia-
bility. This measure was calculated for 10,000 random
split-half divisions and was averaged to produce the
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Fig. 2. Results of searchlight classification accuracy (A) average within-position classification accuracy across subjects, significant at the group level
(q1 = 0.05 and q2 = 0.01); (B) average cross-position classification accuracy across subjects, significant at the group level (q1 = 0.05 and q2 = 0.01); (C) five
clusters with significant cross-position classification accuracy used as ROIs (note that the exact ROIs differ slightly across iterations of the leave-one-
subject-out procedure).

final reliability measure. To examine the significance of
this reliability measure, we obtained the bootstrapped
null distribution of reliability by random shuffling of the
labels in the correlation matrix separately for the two
split-half groups and by calculating the reliability for
10,000 random samples.

An MDS analysis was then performed on this ROI-
dissimilarity matrix, and the first two dimensions that
captured most of the variance were used to produce an
MDS diagram in which the distance between each pair
of ROIs represents the similarity between them (Vaziri-
Pashkam and Xu 2019). The squared correlation (r2)
between 2D distances in the MDS plots and the original
distances in the multidimensional space was used to
quantify the variance explained by the first two dimen-
sions. We then fit two regression lines employing the total
least square method, with one line passing through the
positions of the occipitotemporal regions and the other
passing through the positions of parietal regions. The
variance explained by the fitted lines was also measured;
2D distances between regions based on the predicted
positions on the lines were obtained, and the r2 between
these distances and the original distances based on the
input matrix to the MDS analysis was calculated. Sim-
ilarly, we computed the r2 between distances based on
the MDS plots and those based on the line predictions to
determine the variance explained by the two lines on the
MDS plot.

Results
In the present study, we aimed to identify regions
containing position-tolerant representations of actions
and to investigate the representational content of these
regions using fMRI MVPA. A stimulus set of 10 different
human action videos in PLD format (Fig. 1) was presented
at two different positions in the visual display (upper and
lower visual hemifields), and t-values were extracted in
each voxel of the brain for each of the actions and each
position. Employing a multiclass SVM classifier, within-
and cross-position decoding was then applied following
a searchlight approach across the whole brain.

Action decoding across the whole brain
To identify regions that showed selectivity for our action
stimuli within each presentation position (upper/lower
visual fields), classifiers were trained and tested with
fMRI responses for stimuli presented within the same
position. To identify regions showing position tolerance,
we performed a cross-position classification. Classifiers
were trained with fMRI responses to stimuli presented
at the upper visual field and were tested with fMRI
responses to stimuli presented at the lower visual field
and vice versa. Both within- and cross-position classi-
fication were applied using a surface-based searchlight
method.

Figure 2A and B depict the average within- and
cross-position classification accuracy across subjects,
significant at the group level (q1 = 0.05 and q2 = 0.01),
respectively. Comparison of these maps reveals that a
subset of the regions that show above chance within-
position classification also demonstrate generalization
across positions. The group analysis showed significantly
above-chance cross-position classification accuracy
in the left and right lateral occipitotemporal cortices
(LOTC), right IPS, and right postcentral gyrus (Fig. 2B).

Action decoding in ROIs
To investigate the extent to which changes in position
affect the representations in individual regions, we used
a leave-one-subject-out procedure (see Materials and
methods) to extract ROIs with above-chance crossdecod-
ing accuracy. Five clusters (Fig. 2C) were selected based
on a searchlight analysis on all but one subject, and the
selected clusters were used as ROIs for the left-out sub-
ject: LOTC, bank of right superior temporal sulcus (bSTS),
right IPS, and right postcentral gyrus. A small number of
voxels passed the threshold in other regions, including
regions in the right premotor (28 ± 14 vertices) and the
left parietal cortex (3 ± 2 vertices) as well, but since the
number of vertices were too low and did not pass the 100
vertex threshold, these regions were not selected.

A two-class linear SVM was employed for within- and
cross-position classification within each ROI using the
100 most informative vertices in each ROI (Mitchell et al.
2004). Figure 3A illustrates the results of within- and
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Fig. 3. (A) Within and cross-position decoding accuracy for the ROIs obtained from searchlight analysis. Error bars indicate standard errors of the
means (∗∗group analysis at q1 = 0.01, q2 = 0.01 or paired t-test, P < 0.01, FDR-corrected). The vertical dashed line separates occipitotemporal ROIs from
parietal ROIs. (B) Maps of cross-position divided by within-position classification accuracy obtained from searchlight analysis in vertices with significant
within-position classification accuracy.

cross-position decoding accuracy for each of the ROIs.
All ROIs had a significant decoding accuracy for cross-
and within-position (group analysis at q1 = 0.01, q2 = 0.01).
In the left and right lateral occipitotemporal and pari-
etal ROIs, cross-position decoding accuracy was signif-
icantly lower than within-position decoding accuracy
(paired t-test, Ps < 0.0075, FDR-corrected q = 0.01), while
this difference was not significant in bSTS and post-
central regions (paired t-test, Ps > 0.13, FDR-corrected
q = 0.01). These results suggest a reduction in position
sensitivity from posterior to anterior regions in both
occipitotemporal and parietal cortices. To visualize this
finding on the whole brain, we divided the cross-position
by within-position classification accuracy in all vertices
with above-chance within-position accuracy. The result-
ing map averaged across subjects is depicted in Fig. 3B.
In line with the ROI analysis, this map demonstrates an
increase in position tolerance from posterior to ante-
rior regions in both occipitotemporal and parietal cor-
tices. We have also compared the differences in within-
position classification accuracy between upper and lower
visual field stimuli for these ROIs. Classification accu-
racies were higher for the lower visual field stimuli,
but we did not find any particular differences between
parietal and occipitotemporal regions in this regard (see
Supplementary Fig. S1).

No eye tracker was used inside the scanner, so we do
not have a direct record of eye movements during the
scan. However, participants practiced the task outside
the scanner under supervision and we made sure they
are able to perform the task fixating on the central
fixation point. In addition, there is good evidence in the
results to demonstrate that subjects were following the
fixation instructions: (i) V1 did not show above-chance
accuracies in the cross-position classification analysis.
If the participants were looking at the stimuli directly,
we would have observed high cross-position decoding
in V1. (ii) There are significant differences between the

accuracies for upper and lower visual field stimuli. These
differences would not be observed if the participants
were not fixating. (iii) We performed a contrast analy-
sis comparing upper and lower visual field stimuli. The
result maps in early visual cortex indicate strong acti-
vation in the dorsal and ventral early visual cortex for
the lower and upper visual field stimuli, respectively (see
Supplementary Fig. S2 for the maps of contrast analysis
comparing upper and lower visual field stimuli).

Revealing the representational content of the ROIs

To uncover the principles that govern the organization
of action representations in each ROI, we used an
RSA (Kriegeskorte et al. 2008). We constructed models
based on the body-part movements and behavioral
similarity ratings performed on the videos by human
observers (see Materials and methods). We then used
correlation analysis to investigate the similarity of action
representations between models and ROIs according to
their cross-position pairwise decoding accuracies (see
Supplementary Figs. S3–S5 for dissimilarity matrices
of models and decoding accuracies). The reliability of
the behavioral dissimilarity matrices was high (0.7654).
Models of stimuli (distance matrices obtained from
models) were also compared with each other; the Kendall
correlation was calculated, and its significance was
examined applying permutation tests. The behavioral
and body-part models were not significantly correlated
(Kendall correlation = 0.0394, P = 0.2562).

Figure 4A shows the Kendall correlations between the
models and cross-position pairwise decoding accura-
cies across participants for body-part movement and
behavioral rating models (performing this analysis using
regression did not qualitatively change the results).

Significant correlations were found with the body-
part model in all ROIs except for L-LOTC (permutation
test, P < 0.05 for R-LOTC and Ps < 0.01 for bSTS, IPS,
postcentral) and with the behavioral rating model in all
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Fig. 4. Brain-Model correlations: (A) Kendall correlation body-part movement (dark gray) and behavioral rating models (light gray) and cross-position
pairwise decoding accuracies for the individual ROIs. Error bars indicate standard errors of the mean (permutation test or paired t-test, ∗P < 0.05,
∗∗P < 0.01, FDR-corrected). The vertical dashed line separates occipitotemporal ROIs from parietal ROIs. The horizontal lines indicate the lower limit
of the noise ceiling. (B) Kendall correlation between body-movement-average (light gray) and body-movement-pattern (dark gray) models and cross-
position pairwise decoding accuracies for individual ROIs. Error bars indicate standard errors of the mean (permutation test or paired t-test, ∗P < 0.05,
∗∗P < 0.01, FDR-corrected). The vertical dashed line separates occipitotemporal ROIs from parietal ROIs.

ROIs except for IPS and postcentral (permutation test,
Ps < 0.01).

A two-way repeated-measures ANOVA with model
(body-part movement and behavioral rating) and ROI
as independent factors and correlation coefficient as
the dependent variable was performed. The effect of
ROI (F(4,84) = 0.9303, P = 0.4504) and the effect of model
(F(1,84) = 0.7636, P = 0.3921) were not significant, while
the interaction between the two (F(4,84) = 36.8, P < 0.0001)
was significant. Individual comparisons within ROIs
showed that correlation coefficients were greater for the
behavioral rating model in L-LOTC and R-LOTC and for
the body-part movement model in IPS and postcentral
(all t(21) > 3.7117, all P < 0.0016, FDR-corrected). To
measure the reliability of the data, we used the lower
limit of the noise ceiling, which gives an estimate of the
highest correlation we can expect in each region when
correlating neural and behavioral dissimilarity. For each
region, it was computed as the crossvalidated correlation
of each subject’s dissimilarity matrix with the mean of
the remaining subjects’ dissimilarity matrices.

Figure 4B shows the average Kendall correlation
between the models and cross-position pairwise decod-
ing accuracies across participants for body-movement-
pattern and body-movement-average models. As Fig. 4B
shows, all ROIs showed correlations with the body-
movement-pattern model (permutation test, P < 0.05
for L-LOTC and R-LOTC, P < 0.01 for bSTS, IPS and
postcentral, FDR-corrected, 5 comparisons), but body-
movement-average models only showed correlations
with the parietal ROIs (permutation test, P < 0.01, FDR-
corrected) and showed no significant correlation with the
lateral occipitotemporal ROIs (permutation test, P > 0.05,
FDR-corrected).

A two-way repeated-measure ANOVA with model
and ROI as the independent factors and correlation

coefficient as the dependent variable showed no signif-
icant effect of model (F(1,84) = 0.0117, P = 0.9148), while
the effect of ROI (F(4,84) = 22.5280, P < 0.0001) and the
interaction between the two (F(4,84) = 11.5105, P < 0.0001)
were significant. The significant effect of ROI points to
greater correlation coefficients in parietal ROIs. Individ-
ual comparisons within ROIs showed that correlation
coefficients were greater for the pattern model in L-
LOTC (t(21) = 2.6553, P = 0.0370, FDR-corrected) and for
the average model in IPS (t(21) = 4.9394, P = 3.4583e − 04,
FDR-corrected).

We also compared the behavioral rating model with
the average and pattern models by applying two separate
two-way repeated-measure ANOVAs with model and ROI
as independent variables and correlation coefficient as
the dependent variable.

Results for the body-movement-average and behav-
ioral rating models showed no significant effect of ROI
(F(4,84) = 1.1066, P = 0.3589), and model (F(1,84) = 0.3031,
P = 0.5878), while the interaction between the two was
significant (F(4,84) = 36.4416, P < 0.0001). Individual com-
parisons within ROIs showed that correlation coefficients
were greater for the behavioral rating model in L-LOTC
and R-LOTC and for the body-movement-average model
in IPS and postcentral (all t(21) > 3.5686, all P < 0.0018,
FDR-corrected).

For the body-movement-pattern and behavioral rating
models, results showed no significant effect of model
(F(1,84) = 0.4335, P = 0.5174), while the effect of ROI
(F(4,84) = 8.8253, P = 0.0001) and interaction between the
two (F(4,84) = 37.6654, P < 0.0001) were significant. Indi-
vidual comparisons within ROIs showed that correlation
coefficients were greater for the behavioral rating model
in L-LOTC and R-LOTC and were greater for the body-
movement-pattern model in IPS and postcentral (all
t(21) > 4.8254, all P < 0.0001, FDR-corrected).
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Fig. 5. (A) Inflated brain surface from a representative participant showing the ROIs examined in lateral and ventral views with white outlines for
Wang’s ROIs and colorful outlines for functional ROIs obtained from searchlight analysis. (B) ROI dissimilarity matrix based on the distance between
their cross-position decoding accuracy for Wang’s ROI and ROIs obtained from searchlight analysis. Lighter colors show higher distance. (C) MDS plot of
Wang’s ROIs (light gray) and ROIs obtained from searchlight analysis (dark gray) and a total least square regression line through the occipitotemporal
regions (the light gray line) and another through the parietal regions (the dark gray line). The MDS plot and the lines could capture 0.5522% and 0.4798%
of the variance of the ROI dissimilarity matrix.

In sum, these results reveal dissociations between the
classification accuracies in the lateral occipitotemporal
and parietal ROIs. In lateral occipitotemporal ROIs, the
cross-position decoding accuracies are more correlated
with behavioral ratings than any of the body-part move-
ment models, while those in parietal ROIs are more
correlated with the objective movement models.

ROI similarity analysis

In addition to the five clusters obtained from the
searchlight analysis, we obtained the cross-position
decoding accuracy of retinotopic regions of inter-
est across occipitotemporal and parietal cortex (see
Materials and methods). We calculated cross-position
classification accuracies for these ROIs following a
similar procedure as that used for the ROIs obtained from
searchlight analysis. Then, to examine the representa-
tional similarity across all ROIs (including retinotopic
ROIs and ROIs obtained from searchlight analysis),
we computed the one minus the correlation between
their cross-position decoding accuracy (Fig. 5B). The

resulting ROI dissimilarity matrix had high split-half
reliability of 0.8346, significantly higher than chance
(bootstrapped null distribution 95% confidence interval
[−0.0011, 0.0012]). To visualize region-wise distances, we
then applied an MDS analysis on this matrix. Figure 5C
depicts the first two dimensions that captured most of
the variance (r2 = 0.5522). These results are consistent
with the RSA and further suggest the presence of two
separate networks for processing actions. One starting
from the early visual cortex going to the lateral surface
of the brain, and another splitting from this pathway
toward the parietal cortex with the bSTS region landing
right between the two pathways. This observation was
quantified through fitting two total least square lines to
the points on the MDS plot: one line was passed through
occipitotemporal regions (V1, V2, V3, hV4, VO1, VO2, MST,
hMT, LO2, LO1, V3b, and V3a from the Wang atlas, and
L-LOTC, R-LOTC, and bSTS from our ROI analysis) and
the other line was passed through parietal regions (IPS0,
IPS1, IPS2, IPS3, IPS4, IPS5, and SPL1 from Wang atlas and
IPS and postcentral from our ROI analysis). These lines



Elahé Yargholi et al. | 1471

could explain 0.79% of the variance of the positions of
the regions on the MDS plot and 0.48% of the variance of
the full multidimensional space. We repeated the same
analysis, including only the searchlight identified ROIs,
and the result again showed a clear separation of parietal
and occipitotemporal regions (Supplementary Fig. S6).

Discussion
In this article, we used PLDs of human actions pre-
sented in either the upper or the lower visual fields and
examined the extent of position tolerance as well as the
representational content of action-selective regions in
the human brain. Using cross-position decoding analysis,
we found that regions in the LOTC, right IPS, and right
postcentral gyrus contain position-tolerant representa-
tions of action stimuli. Additionally, we investigated the
representational content of these regions and found that
representations in parietal regions were more related
to the movements of the body parts, while those in
occipitotemporal regions were more related to human
subjective judgments about actions.

To the best of our knowledge, this is the first mul-
tivariate pattern analysis study that has used PLDs to
characterize action representations in the human brain.
Previous multivariate studies of action representation
have used natural videos of actions (Hafri et al. 2017;
Wurm, Caramazza, et al. 2017b; Tarhan and Konkle
2020). Employing natural action stimuli may have the
problem that it is unclear what drives the responses.
The responses may be related to actions in the videos,
but other correlated features, such as objects, scenes,
number of people in the videos, etc., could contribute to
the responses. Using the PLD format allows us to restrict
the visual content of action stimuli to the movements
of the limbs and removes other confounding factors.
Studies that use natural videos often reveal larger
swaths of the cortex as action-selective compared to
our results (Hafri et al. 2017; Wurm, Caramazza, et al.
2017b; Tarhan and Konkle 2020). These differences could
be related to the fact that PLD stimuli are a more
specific probe of action selectivity in the cortex. But
these studies are also different from ours in that they
did not directly test for position tolerance. In fact, our
within-position classification does demonstrate action
selectivity bilaterally in larger parts of the cortex. But
this selectivity is much more restricted and mostly right-
lateralized when carefully testing for position tolerance.
Future studies that directly compare position-tolerant
selectivity to PLD stimuli and natural videos on the
same population of subjects could further elucidate the
differences between responses to PLDs and videos.

We did not find a strong selectivity in left anterior
inferior parietal lobe commonly found in studies of
action observation. A careful survey of previous literature
(Goldenberg and Spatt 2009; Buxbaum and Kalénine
2010; Grosbras et al. 2012) reveals that this region is
mostly activated in the presence of hand actions and

hand/object interactions. In our PLD stimuli, we did not
have hands, and the object interactions mostly involved
visible arm and torso movements. Future studies with a
focus on hand actions may be better suited to test the
position tolerance in the left anterior IPL.

We found regions in the left parietal cortex that
showed above-chance within-position classification
but did not show a strong position tolerance in our
cross-position classification analysis. Could this lack of
position tolerance observed here be due to lower overall
classification accuracies in this region? Note that the
bSTS region has even lower within-position classification
accuracies, yet it does show significant cross-position
classification. Therefore, we are inclined to attribute the
chance level cross-position accuracies in the left parietal
cortex to the lack of position tolerance in these regions.

Our results, for the first time, provide a comprehensive
understanding of position-tolerant action representa-
tions in the human visual cortex. Our findings in the
lateral occipital cortex are consistent with those of
Grossman et al. (2010) who applied fMRI adaptation
and showed position-tolerant representation of actions
in STS. However, they failed to find other position-
invariant regions found in our study, especially the
regions in the parietal cortex. This discrepancy may
be related to differences in design. Our block design
paradigm and the use of SVM classifiers may have
provided us with a higher power and sensitivity to detect
regions that contain position-tolerant action represen-
tation (Coutanche et al. 2016). Roth and Zohary (2015)
investigated position invariance during observation of
natural tool-grasping clips using MVPA (correlation and
crossdecoding classifier). They observed a gradual loss
of position information accompanied by enhancement
of hand/tool identity along the posterior–anterior axis
in the dorsal stream. This result is consistent with our
finding for the parietal cortex, but they did not observe
such a gradient in the lateral stream. Their focus on
grasping actions may have lowered their chance of
observing the full extent of position tolerance in the
lateral occipitotemporal cortex.

After identifying the position-tolerant regions, we
investigated their representational content. In the
occipitotemporal cortex, we found that a model based
on the behavioral ratings of similarity was the best
predictor of the cross-position pattern classification
accuracies. These results are consistent with a study
by Tucciarelli et al. (2019), which used natural images of
different actions and showed that responses in the LOTC
were correlated with the behavioral ratings of semantic
similarity between actions. Similar to our results, they
also showed a lower correlation in LOTC with a model
based on body movements. On the other hand, they
failed to find a significant correlation with a body-part
model in the parietal cortex. This could be because
they used human ratings of body-part movements as
opposed to the objective measures we used based on
actual measures of body position. Humans may fail
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to consider the movement of all body parts and only
focus on the main effector of action for their ratings. In
addition, they also employed an event-related design that
has less power than our block design paradigm. Thus,
our results extend their findings and further elucidate
the differences between parietal and occipitotemporal
action representations.

In a study with a large set of human action videos,
Tarhan and Konkle (2020) used behavioral rating to con-
struct an encoding model to investigate action repre-
sentations in the human brain. Their behavioral ratings
included questions related to body parts involved in the
action as well as the action target. Using clustering anal-
ysis, they divided voxels into four networks, suggesting
that one is driven by the social aspects of actions and
four are driven by the scale of the interaction envelope.
Consistent with our study, their clusters spanned both
occipitotemporal and parietal regions, with notable dif-
ferences in the response profile between the two net-
works. However, it is difficult to be more specific in com-
paring their results to our findings due to methodolog-
ical differences. They used natural videos of everyday
scenes containing actions as stimuli. Other than human
bodies or body parts performing the action, their stimuli
also contained objects and other scene elements. The
use of natural stimuli makes it difficult to determine
if the clusters reflect responses to actions or the scene
elements correlated with the actions. Also, since we used
a block design paradigm and aimed at determining the
extent of position invariance in action-selective regions,
we could only collect data from a small set of actions.
Future studies with a larger set of controlled PLD stimuli
could test the extent to which sociality and interaction
envelope determine the responses in position-invariant
action-selective regions in the brain.

Investigating the representations of actions in the
dorsal stream, Buccino et al. (2001) suggested that
parietal regions represent actions based on action
effectors. Jastorff et al. (2010), Abdollahi et al. (2013),
and Vannuscorps et al. (2018), on the other hand,
provided evidence that action representations in parietal
regions are organized based on the category of actions
independent of the effectors. Here, we show that a model
based on body-part movement shows high correlations
with the pattern of classification accuracies in the
parietal stream regions. Our body-part movement model
was constructed based on the movement of all body
parts, including the trunk and the limbs. This model
included more information than just the action effector.
High correlations of this model with the classification
accuracies in the parietal regions suggest that parietal
regions may contain a more holistic representation of
body parts during action observation.

Even though lateral regions show higher correlations
with the subjective model than the body-part model,
their correlation with the body-part movement was
still greater than zero. Therefore, lateral regions show
signatures of both objective and subjective measures.

Nevertheless, a more detailed analysis of the body-
part model separating the patterns of movement from
average movements revealed further differences between
the lateral occipitotemporal and parietal regions. While
the parietal regions showed sensitivity to both pattern
and average of movements, the lateral occipitotemporal
regions showed only a correlation with a model based
on patterns of movement. With the limited number of
stimuli in our set, we cannot perform a more nuanced
analysis of the differences in the sensitivity to various
body parts between lateral occipitotemporal and parietal
regions. Future experiments with an expanded set of PLD
stimuli could reveal potential differences between the
two networks in their body-part representations.

Looking at decoding for different supraordinate action
categories would also be interesting. However, since the
experiment was not designed for this purpose, there is
an imbalance in the number of actions per category
and the results of this analysis may be unreliable
(see Supplementary Fig. S7 for decoding social actions,
object-directed actions, and whole-body-motion actions).

In the domain of object representations, recent stud-
ies have revealed that both dorsal and ventral stream
regions contain object information independent of the
position of objects (Almeida et al. 2018; Vaziri-Pashkam
and Xu 2019), but the data-driven analysis of object
representation still reveals the separation of these dor-
sal and ventral regions in their representational con-
tent (Vaziri-Pashkam and Xu 2019). Here, focusing on
action observation, we showed that action representa-
tions become progressively less position-dependent from
posterior to anterior along both lateral occipitotempo-
ral and parietal pathways. Moreover, employing either
data-driven- (looking at ROI similarities) or model-based
approaches, we observed a clear distinction between rep-
resentational content in the two pathways. Looking more
closely at the arrangement of ROIs in the MDS plot,
we can see that ROIs along the lateral occipitotemporal
surface follow a continuous trajectory from early visual
areas, while parietal ROIs are separated away from both
early visual and lateral ROIs. These results provide evi-
dence for distinct representational content along the two
pathways.

Embodied cognition theories argue that recognition
of observed actions relies on sensory-motor simulation
and taps into motor representation necessary for
executing those actions (Rizzolatti and Craighero 2004;
Pulvermüller 2013). Motor, premotor, and parietal regions
that contain mirror neurons in macaque monkeys have
been proposed as potential regions contributing to action
recognition through motor simulation (Rizzolatti and
Craighero 2004). In our study, although we did find action
selectivity in the premotor cortex in the within-position
classification analysis, these representations were not
strongly position-tolerant. The representations in our
parietal regions did not show correlation with the model
based on subjective judgments on actions. These results
suggest that the motor, premotor, and parietal regions are
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unlikely to contribute to the subjective understanding of
actions (Caramazza et al. 2014). Nevertheless, it is still
possible that parietal regions would contribute to action
observation during coupled motor interactions as well
as motor imitations (Caspers et al. 2010) through the
analysis of body-part movements. Our results suggest
distinct roles for lateral occipitotemporal and parietal
regions in action observation.

In summary, we found regions capable of represent-
ing highly abstract forms of observed human actions,
namely the PLD video clips of actions across changes
in position. These regions located in lateral occipitotem-
poral and parietal cortices contained distinct represen-
tational content. The lateral occipitotemporal regions
reflected more strongly the human subjective knowl-
edge about actions, while the parietal regions reflected
only the objective bodily movements. These results sug-
gest the existence of two distinct networks that contain
abstract representations of human actions likely serving
different purposes in the visual processing of actions.

Conclusions
Humans can recognize actions rapidly and accurately.
To obtain this ability, the human brain should contain
abstract representations of actions that are robust to
changes in the position of the actor. Here, we measured
fMRI responses to video clips of actions presented in
different positions. We found multiple brain regions
that contained position-tolerant action representations.
These regions had distinct representational contents.
The responses in occipito-temproal regions were more
related to subjective knowledge about actions, and those
in the parietal regions were more related to objective
movements. These results suggest that the two networks
play distinct roles in human action understanding.
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